Classifying Weed Species Using Color Image Texture

نویسندگان

  • T. F. Burks
  • K. D. Donohue
چکیده

Color co-occurrence method (CCM) texture statistics were used as input variables for a backpropagation (BP) neural network weed classification model. Thirty-three unique CCM texture statistic inputs were generated for 40 images per class, within a six class data set. The following six classes were studied: giant foxtail, large crabgrass, common lambsquarter, velvetleaf, ivyleaf morningglory, and clear soil surface. The texture data was used to build six different input variable models for the BP network, consisting of various combinations of hue, saturation, and intensity (HSI) color texture statistics. The study evaluated classification accuracy as a function of network topology, and training parameter selection. In addition, training cycle requirements and training repeatability were studied. The BP topology evaluation consisted of a series of tests on symmetrical two hidden-layer network, a test of constant complexity topologies, and tapered topology networks. The best symmetrical BP network achieved a 94.7% classification accuracy for a model consisting of 11 inputs, five nodes at each of the two hidden layers and six output nodes (11 × 5 × 5 × 6 BP network). A tapered topology ( 11 × 12 × 6 × 6 BP network) out performed all other BP topologies with an overall accuracy of 96.7% and individual class accuracies of 90.0% or higher.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Corn and Weed Species by the Combination of Spectral, Shape and Textural Features

Accurate detection of weeds in farmland can help reduce pesticide use and protect the agricultural environment. To develop intelligent equipment for weed detection, this study used an imaging spectrometer system, which supports micro-scale plant feature analysis by acquiring high-resolution hyper spectral images of corn and a number of weed species in the laboratory. For the analysis, the objec...

متن کامل

Generalizing Texture Images Using Wavelet-Based Image Retrieval Algorithms

Data generalization is a data preprocessing technique employed in data mining. It is a process that abstracts a large set of task-relevant data in a database from a relatively low conceptual level to higher conceptual levels with the aim of reducing data size. This paper discusses a novel method of generalizing texture images by clustering them based on color, texture and semantically classifyi...

متن کامل

A Real-Time Specific Weed Recognition System Using Statistical Methods

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic ...

متن کامل

Automatic Identification of Weed Seeds

We explore the feasibility of implementing fast and reliable computer-based systems for the automatic identification of weed seeds from color and black and white images. Seeds size, shape, color and texture characteristics are obtained by standard image-processing techniques, and their discriminating power as classification features is assessed. These investigations are performed on a database ...

متن کامل

Large-Scale Investigation of Weed Seed Identification by Machine Vision

We explore the feasibility of implementing fast and reliable computer-based systems for the automatic identification of weed seeds from color and black and white images. Seeds size, shape, color and texture characteristics are obtained by standard image-processing techniques, and their discriminating power as classification features is assessed. These investigations are performed on a database ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001